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The intent of this paper is to investigate the mechanics of delamination growth in an
isotropic, ideally-brittle layered material under an impact load and to present guidelines for
the design of more energy absorbent structures. Using a finite element model, both two-
and three-layered configurations are considered. Prompted by the results from this model,
closed-form solutions for the interlaminar shear strength and the interfacial fracture
toughness corresponding to maximum energy absorption are derived for the two-layered
laminate. These solutions were used to develop guidelines for the optimal design of two-
and three-layered laminates. © 1999 Kluwer Academic Publishers

1. Introduction Unfortunately, design guidelines for using damage for-
Since the beginning of the modern transportation eramation as a mechanism for energy absorption have not
a need has existed for effective protection against imyet been established. This study was designed to ex-
pact. Most of the techniques currently employed focusplore the mechanics of delamination in layered mate-
on damage tolerance or the ability to maintain residuatials in order to establish such guidelines for achieving
strength after impact occurs. Because delaminations inptimal energy absorption.
layered beams greatly reduce residual strength, itis usu- In the present study, a layered beam under a statically
ally beneficial to minimize their extent. For many ap- applied three-point bending load was considered. Static
plications this is appropriate, since most structures, edoading has previously been found to be a good approxi-
pecially those in the aerospace industry, must be able tmation for low velocity impact when the impactor mass
sustain numerous minor impacts before needing repaiis large compared to that of the beam [5].
Recently, several researchers [1-4] have recognized
that the extent of delamination in layered materials can
profoundly affect the amount of energy absorbed during2. Model
impact. Based upon this concept, the focus of impac®.1. Structure
protection may be switched from maintaining resid- Since the focus of this work was on the benefits of layer-
ual strength to using the formation of delaminations toing, failure was assumed to occur in the interface alone.
maximize energy absorption. While this concept is ap-Thus, transverse (tensile) failure of the lamina was con-
pealing, it does leave the structure with low residualsidered catastrophic and represented final failure. In or-
strength and, consequently makes it vulnerable to fueer to isolate the effect of interface delamination upon
ture impacts. If, instead, a disposable barrier-shell dethe absorbed energy, only two- and three-layer geome-
signed specifically for damage protection is wrappedries as shown in Fig. 1 were considered.
around the structure, the shell may be removed and A finite element model with twenty-four Euler-
replaced after it is damaged, leaving the interior un-Bernoulli beam elements was used to represent the
damaged and intact. Such impact bumpers could alsbrittle lamina. This number gave excellent agreement
be applied as cheap modifications to existing structuresyith standard solutions (i.e., 3-point bend and end-
perhaps in a manner similar to the tiles that form thenotched flexure). The simulation of an adhesive inter-
heat shield on the space shuttle. face was accomplished with Lagrange’s method of un-
Many industries already employ barrier-shells fordetermined multipliers. This is a simple yet powerful
impact energy absorption. Race car bodies are designadeans of enforcing constraints without the numerical
to crush and peal off, each piece taking a bit of the imsproblems associated with stiff springs. In matrix form,
pact's kinetic energy with it, saving the rigid driver the constraints may be written aS]fu} = {0}, where
chassis from harm. Tanks also employ similar layer{C] is a constraint matrix{u} is the displacement vec-
ing techniques to protect against missile strikes. Recertor, and{0} is the null vector.
work [1] has also hinted at using metallic layered mate- Because of the offset created by not having the
rials for automobile bumpers and highway guard rails.beam nodes collocated along the interface, the coupling
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Figure 1 Specimen geometry.

between the rotational and translational dof. must béaminates. For this configuration, the Virtual Crack Ex-
accounted for. If small rotations are assumed, the rotension method had to be employed.

tational effect on the verticabj displacement may be  Virtual Crack Extension is the most basic and the
neglected, but the horizontal component constraint most commonly used method for the calculatiorGof

becomes, As stated above, it relies on the direct application of
Equation 1 in the numerical model. When displacement
U — <E>gl = Up+ <E>gz control and the force-displacement relation are applied,
2 2 the strain energy release rate becomes,
whereus, h;, andd; refer to the top beam node angl, 1 c[dF
h,, andd, refer to the bottom beam node. G= Sl {ﬁ} (2)
Putting these constraints into matrix forn€][is
found. where{u} and{F} are the displacement and load vec-

tors along the midspan. In the finite element model,
the derivative in Equation 2 can be computed numeri-
cally using forward difference. Thus, the crack s propa-
gated asmallamoump A (i.e., one element) and a load
changeAF, is found. This method proved to be very
useful with three-layered laminates where the Zero Vol-
ume Integral couldn’t be applied. Unfortunately, it was
0o cT comparatively computationally expensive and slightly
k= [C 0 } less accurate due to the numerical differentiation.
The Zero Volume Integral developed by Shankar [8]
to model delaminations in composite beams and later
2.2. Crack propagation [9] composite plates afforded a tremendous savings in
Because brittle behavior is assumed in both the lameomputational effort.
ina and interface materials, Griffith's [6] strain energy  Since this method uses already calculated values (i.e.,
release rate criteria may be used to predict the onsdvads and displacements), the extra “virtual” propaga-
of crack propagation in lieu of the more tedious stresgion step in the Virtual Crack Extension method was
field analysis. The basic equation for the strain energyiot required. As long as the beam elements around the

1 0 —hy/2 -1 0 —hy/2
c=|01 o0 0 -1 0
00 1 0 0 -1

From this a rigid element stiffness matrix can be deter
mined by the relation,

release rate3, is given in Equation 1, below. crack tip are chosen such that thelirectional cosines
and the top and bottom surface tractions are zero, the
G = o (1) J-integral, and hence, the strain energy release rate, for
A a two-layered laminate, degenerates to the following,

With this method, the fracture mechanics failure cri-
terion isG > Gc. It is important to note that there are
actually three modes of fracture—opening (I), shearing,,
(I, and tearing (Il); however, since transverse failure
of the lamina was the final failure criteria, the crack of the respective beam sections as shown in Fig. 2.
growth is purely Model II. For this reaso@,; andG;, In a three-layer beam where both interfaces have
(the Mode Il energy release rates) will be referred tOstarted to delaminate Equation 3 may be applied to
simply asG andGec. '

. each crack tip.
Two methods were used for the calculation of the P

G=1bUP +UO-UP-U) @

hereb is the width of the laminate and thq_i)’s are
the strain energy densities (strain energy per unitlength)

strain energy release rate: Virtual Crack Extension and Gy = 1/b(UIE4) + UES) _ UES) _ UEG))
the Zero Volume Integral. The Virtual Crack Extension L . ) 5
method directly applies Equation 1. The Zero Volume G2 = l/b(UE Y u® -y —uf ))

Integral method is based on tleintegral concept de-

veloped by Rice [7]. Because of its numerical efficiencyG; and G represent for the top and bottom crack, re-
and accuracy, the Zero Volume Integral method waspectively. This result implies that all of the energy
used in the simpler two-layer case, but for reasons tin the middle layer (elements 3 and 4) contributes
be explained below, it could not be used for three-layerequally to both cracks—an obvious violation of the
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stresses along the undelaminated interfaces were calcu-
lated assuming a parabolic variation through the thick-
ness. In three-layer laminate cases where only one
interface had failed, the delaminated interface was con-
sidered a free surface and separate shear distributions
were found for the sections above and below the delami-
nation. It was assumed that once the interface failed due
to shear, an initial crack of lengthy) formed and that
further crack propagation was governed by the strain
energy release criteria described above. The creation

of this initial crack has been previously documented
[5] and is considered a reasonable assumption.

The Green’s function technique worked as long as
no change in the stiffness matrix or load vector oc-
curred. When the interface failed or the crack propa-
gated, the global stiffness matrix and load vector were
recompiled and the system was resolved as shown in the
“Modify Global Stiffness/Load” block and return loop.
Global oty oad | — The “new” system went through the Green'’s function

process again until it too failed.

Check
for Tensile
Failure

Check
for Interface
Failure

Check
for Crack
Extension

Figure 3 Algorithm flow diagram.

. o . 3. Optimal interfacial properties
conservation of energy principle. Certainly, some frac-ry,q st set of finite element tests were designed to

tion of U_Eg) andU,E‘D apply to each crack, butisolating estaplish the relationship between the interfacial prop-

the portions is not a simple matter. Thus, for three-grties (shear strength and fracture toughness) and en-

layer beams only the Virtual Crack Extension methodgrgy absorption. In order to isolate the effect of property

was used. changes, a single interface system (i.e., two-layer) like
that shown in Fig. 1 was used.

2.3. Algorithm
A basic flow diagram for the finite element model used
is given in Fig. 3. 3.1. Optimal interfacial shear strength
Since load and displacement are linearly related, iSeveral trials were run for various combinations of
was not necessary to solve the system at each loadirghear strength and fracture toughness. For each layer
increment. Instead, a Green'’s function calculation routhickness configuration the results of these tests were
tine was used in order to save computer effort. Thuscompiled into Energy vs. Shear Strength plots; how-
during the “Solve for displacements” procedure, a unitever, since all of the results followed a similar trend
displacement was applied and the total system responsmly the optimal casehg =h,) is presented (Figs 4
was measured. This response was then “scaled” in thend 6). The data was found to be discontinuous due to
“Scale displacements” phase to reflect the true loading change in the final failure mechanism, and was, thus,
state. The displacements resulting from this stage werbroken into two parts: the First Failure Region (Fig. 4)
used to calculate forces and stresses. and the Second Failure Region (Fig. 6). In each case, the
The tensile bending stresses were calculated fronaptimal shear strength corresponding to the maximum
the basic beam theory combined stress formula. Sheanergy absorbed(y) is shown.

4183



5.000 -‘-

4.000

oz

3.000 ® l

2.000 + Interfacial Toughness V
| —ee—0.0 N/m
1000 L ~—®175N/m
—0—3.5N/m

exp

—a—4.9N/m To Ton
0000 4+ . . S S —

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Energy Absorbed (Nm)

Shear Strength (kPa)

Figure 4 Energy absorbed faf < topt(h1 = hy).
1800 +
1600 — )

1400 1 F

§
]

1200 +

1000 +

800 +

Load (N)

600 +

400 1

&

1
I |
200 4+ i /”

0 L I L I L L L | L I L I '
t T t +

Displacement (mm)

Figure 5 Load-displacement diagram for the first failure regibn & hy).

The First Failure Region includes all points to the nated single layer beam and the completely delaminated
left of the discontinuity {f < 7opr) in the Energy vs. two-layer beam occurred (see Fig. 5). Thus, they will
Shear Strength plot. By analyzing the data, two basiboth be referred to as delamination or interface control
characteristics were found: mechanisms.

. . The baseline plot in Fig. 4G =0.0 N/m) repre-
* Th's.’ region corresponded to complete, unstable deéents the energy absorbed if the shear strength was the
lamination of the interface.

sole delamination control mechanism. When the shear

e For all valu_es Of the §hear streng';h and fracture trength was held constant and the interfacial toughness
toughness in this region, the laminate absorbeg

more enerav than a monolithic beam with the sam G.) was increased, the toughness eventually became
. gyt he dominant delamination control mechanism. At this
lamina material and geometry.

point, only an increase i@, nott; , caused an increase
As long as the shear strength was below the optiin absorbed energy. When the shear strength was raised
mal value, increasing the shear strength resulted in anough that it again became the delamination control,
larger first failure load as shown in Fig. 5(— Fop).  the energy absorbed reverted to the baseline. In this
Because more of the total energy capacity of the monoease, even though the interface had non-zero tough-
lithic (unfailed) beam was realized by raising the firstness, the beam had accumulated so much energy prior
failure load, the total energy absorbed also increasedto interfacial failure that the fracture toughness was in-
Since the crack was always found to exhibit un-sufficient to resist further crack growth.
stable propagation, both the shear strength and the The Second Failure Region included all points to the
fracture toughness controlled not the progression butight of the discontinuity ¢ > 7o) in the Energy vs.
rather the onset of crack propagation and determine@&hear Strength plot. Again, several characteristics were
the load at which transition between the undelami-dentified:
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Figure 7 Load-displacement diagram for the second failure region.

e This region corresponded to either incomplete3.2. Theoretical optimal interfacial
crack propagation or no crack propagation at all. properties

e For all values of the shear strength and fracturein order to predict the optimal interfacial strength, a
toughness in this region, the laminate absorbedietailed derivation of the laminate’s strain energy was
no more (i.e., less than or equal to) energy tharperformed. Only the key steps are presented here, the
a monolithic beam with the same layer materialremainder may be found in Ref. [10].
and geometry. Fig. 7 below and proceeding text A detail of the beam components and their associated
explain this in more detail. forces and moments is given in Fig. 9, below. Since

Since the interface was not allowed to completel there is no torsion and the beam is two dimensional
P y(i.e., constant width), the strain energy of the structure

fail, the maximum energy possible in this region was .
that of the monolithic beam. As the shear strength Wagegenerates to the form given below.

increased fromry, more energy was absorbed until 1 5 5

the shear strength at monolithic (tensile) failutg;, U= / (M_ + P—)dx

was reached (i.eFopt— Finf in Fig. 7). Any increase o \ElI' AE

in 7+ beyond this point resulted in no additional energy

absorbed. Thus, fagpt < 7t < Tmt, the energy absorbed Because of the discontinuity at the crack tip, the integral

was actually less than that for the monolithic case. in Equation 4 must be broken into two parts—¢0a
Given these findings, the boundaries of the First andinda — 1), as shown in Fig. 9. In order to simplify

Second Failure Regions may be shown by@hess.z  the calculation, it is assumed that all three sections are

diagram in Fig. 8. made of the same material (i.&€; = E; = Ez3=E).

4
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Figure 9 The section loads in a cracked two-layer beam.

Because transverse cracking was not permitted, th&/herea =a/l, and A; > and By » are both functions
vertical displacement of both Sections 1 and 2 musbf h; andh,.
be equal (i.e.§1 =§2). Using this result and assuming h2

that both ligaments are considered cantilevers, a simple Alp= -2 By, = _Mthe
relationship between the forces and moments in the two ’ hy ’ 2(1+4 n1/2)
layers is found. With Equations 5 and 7, it is possible to express all of
the forces and moments, and hence the strain energy, in
Fi=m2F M1 = n12M2 (5) terms ofthe vertical load;. Performing the integration
given in Equation 4 and applying Castigliano’s theorem
whereny o =h3/h3. gives the final desired result for the combined stress

Recognizing that the total force and the total momentalong the bottom layer in terms of the interfacial shear
along the loading line must be the sum of the contri-strength.
butions from the two layers, the final form for the total
load and moment along the loading-line is, — Tft |:

12h,

o7 14+n12 :|
ni/ga(l +n1,2) + 3ni/23(1 + ni/ga)
F=2(1+n2)F M =2(1+n12)M> (6)

1/3
214+ 2 g1tz
If the interface constraints are applied, the axial force Tt 1412 I
X

and the moment in the bottom layer can be found. ’7153
771,2 3 1 + n1,2
1/3 2 1/3 3
p— <7> R — a) a(m’5 + 1) 3(ny' +1)
A12+6Bi2 (8)
1 . . . .
My = (W) Fol[A12 — (A2 + 3B12)a] Maximum stress, and hence failure, will occur in the
1,2 +06B12 thickest beam, which in this case was assumed to be the

(7)  bottom layer (i.e., Layer 2). Since the effect of contact
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stresses were neglected, the stress distribution is syn¥irtual Crack Extension method was used, the optimal
metric and this assumption may be made without anyalue predicted by Equation 11 was generally larger
loss of generality. than the finite element result. Since this discrepancy
From Equation 8 the tensile stress is found to be avas due to numerical error associated with the forward
function of the crack length. Thus, the crack length cor-difference in the Virtual Crack Extension method, the
responding to the maximum stress along the loadingvalue given by Equation 11 is still considered the the-
line during crack propagation can be found by settingoretically correct one.
the first derivative of Equation 8 with respect to the
crack length to zero. The differentiation produces avery,
complex solution fowy,, .. Thus, for the sake of sim-
plicity, the high accuracy curve fit below was used a
an approximation.

Design guidelines
Through finite element analysis, four failure modes
Swere identified for two- and three-layered laminates.

1 1. Monolithic: The laminate failed as a single beam
O = 03383 (9) (i.e., nointerfacial failure).
1.5+ 0.761873 2. Single Delamination: Only one of the interfaces

This is the crack length at which the maximum tensilecompletely failed. In the case .Of the t\_/vo—lqyered lami-
nate, this is the only possible interfacial failure mode.

stress along the loading-line occurs. As an example, . A :
if n12=1 (i.e.,hy = hy), ay.. is at 44.2% of the total fai?édS;%uJ:taL;neeoouussIyDeIam|nat|on. Both interfaces
beam length. From finite element model datg,, was 4. Progressive Delamination: The interfaces failed

found to be 44.0%. sequentially and independentl
The optimum shear strength is attained when the ten- 9 y P Y-

sile stress at,,,, approaches the tensile failure point. e fajlure progression tree for both two- and three-
Thus, 7opy may be found by substituting Equation 9 |ayered laminates is given in Fig. 10. Simultaneous
into 8 for o with o =ot. This expression is also pro- pejamination and Progressive Delamination in the
hibitively complex, so another curve fit was app“ed-three-layered laminate are designated by dashed and
For greater accuracy, it was broken into two regionsygig lines, respectively.
based upon the value f >. The stages and their associated symbols (blocks in
004 Fig. 10) demonstrate the crack formation and delami-
.2 ) nation process. For instance, in a two-layered laminate
0.06985;(1’;275629— 1.8159. 105 (Fig. 10a), Stage 1 is the uncracked laminate, Stage 2 is
Topt = 0575269 () 17935 the initial formation of the crack by shear failure, and
.2 ’ Stage 3is the completely delaminated interface. Failure

14 nt h progression from initial crack formation to complete in-
1/3 M1,2 n2 ; L . .
x (nis +3 of terfacial delamination is permitted because in all stages
1+mpe 1 and all configurations the crack growth occurred unsta-
(10)  bly. With only one exception (Stage 3) two crack tips
N2 > 0.04 are never simultaneously present in the three-layer lam-

inate. Thus, for all other stages, the three-layer laminate

_ ) 0.2824
Topt = (0.081275)(13418"2) (n75%%*) may be modeled with the two-layer results.

14 23 As long as lamina shear failure is neglected, there

13 +ni2\ hy . . . _

x | mly +3——= |or— are only two possible failure modes in the multi-layered
I+me 1 laminate: transverse (tensile) failure and interfacial fail-

ure. In order to determine how the laminate failure pro-
Using Equation 1, a similar analysis was conductedgresses along the flow diagram in Fig. 10, all of the
for the fracture toughness. With the strain energy inpossible failure loads are calculate at each stage. De-
Equation 4, this calculation was trivial and the result ispending upon the configuration of the given stage, up

presented below. to three failure loads are possible: shear failure of the
) interface (Equation 12), crack propagation along the in-
G 13 31 + ni/zg terface (Equation 13), and tensile failure of the lamina
oo = \ M2 T 97 12 (Equation 14).
b[(ha + hp)® + h3
(0.01184)(09926353y™2 | ( a3o’hy F, = [( at o) C] T (12)
x 71(1)'%0509434 E 3hshy
’ 8ER2(h3 + h3)(ha + hp)?
(11) Fo = \/ ( ;h+h tgz(ﬁj s 1)
It is important to note that this value is only significant e
if the beam has already undergone shear failure and E 2b(h3 + h3 + h3) (14)
the fracture toughness is the primary interface control T 3Lhg of

mechanism.
Additionally, because large errors in tlecalcula-  The individual loads are calculated using the three for-
tion were encountered at small crack lengths when thenulas given in these equations and the layer thickness
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TABLE | Layer thicknesses for the failure stages

Stage Failure mechanism Equation hy hp he hq B
1 Interface 1 12 hy hy + hs 0
Interface 2 12 hs hy + hy 0
Lamina 14 hy +hy + hs 0 0 hy +ha + hs
2 Interface 1 13 hy ho + h3 1
Interface 2 12 hy h3 hy
Lamina 14 maxs, h2 + h3) min(hy, hy + h3) 0 maxf, hz + h3)
4 Interface 2 12 ho hs hy
Lamina 14 maﬁﬁl, hy + h3) min(hl, hy + h3) 0 maxhl, hy + h3)
, ht h
5 Interface 2 13 maxkp, h3) min(hz, h3) 1+ 2 + 3
2 3
Lamina 14 hy hy hs max(i, hz, h3)
6 Lamina 14 hy hs hs max (i, hz, h3)
® ®
l /
/
©] / ®
/
| /
© ® ] ®
T
\
\
\ ®
\
\
1 ®

(a) Two-layer (b) Three-layer

Figure 10 Failure progression in two- and three-layered laminates.

data (Table 1) given below. Since no closed-form solu-initiated shear failure. In this case the interface will fail
tions exist for simultaneous failure (Stage 3), no data ixompletely at the shear failure load (i.e., Stage 1 or 4,
presented for this configuration. Numerical results wergespectively) and that will be the final load for this stage
found using the finite element model and are presenteds well.

in Fig. 13. These were used to establish the guidelines 3. If any of the interface failure loads for a given
in lieu of the closed-form solution. stage are equal, then failure occurs simultaneously.

At every stage, each of these loads are compared. The 4. For this analysis transverse failure of the lamina
smallest of which represents the first, and consequentlywas considered catastrophic and, thus, represents a fi-
only, failure load for that stage and determines the nexhal failure. Transverse failure includes both failure by
stage in the failure progression. There are, howevei:quation 14 and violation of the optimal shear strength
several special cases. and interfacial toughness values as described in case 1

above.

1. If an interfacial failure is determined to occur, it
must be checked against the optimal value for the given This analysis was performed for the entire range of
stage (Equation 10 for shear failure and Equation linterfacial properties and layer thicknesses. The re-
for crack propagation). If the failure load exceeds thesults from this work were used to determine optimal
optimal load then final failure has occurred; otherwise properties and geometry for both the two- and three-
failure proceeds to the next stage. layered laminates. For both configurations, only the

2. If the fracture toughness from either Stage 2 orshear strength was used as the interface failure con-
5 is low compared to the shear strength of the previtrol mechanism. Similar numerical tests were run us-
ous stage, it is possible that the load required to coning the fracture toughness as the interfacial failure con-
tinue crack propagation will be lower than the one thattrol mechanism, but the results are not presented here
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Figure 11 Optimal energy absorption for a two-layered beam with shear strength.

45 +
4 1
T 354
£ 35 ' ~_
Z 2 layer maximum
= 37
2 251 e .-
St
S
3 2 "Monolithic beam
< wmememnnen 2 layer
2 1.5 + 0.05
o — — 010
g 1+ e 0.15
= o 0.05"(FEM)
05 L ® 0.J0"(FEM)
’ O 0.I5"(FEM)
0 : : : : : ; : : : : : 1 |
0 1 2 3 4 5 6 7

Second Layer Thickness (mm)

Figure 12 Optimal energy absorption for progressive failure in a three-layered laminate.

because they exhibited the same trend and provided It was immediately apparent from Fig. 11 that equal
no additional information. Finite element results werethickness layers produced the best energy absorption
used to verify the data at discrete points in Figs 11 andn two-layered beams. As the optimal shear strength

12 (denoted by the data symbols). was approached the energy curve shifted vertically and
the failure mode transition point shifted to the right
4.1. Two-layered laminate until the two-layer maximum was reached. As long as

For the two-layered laminate, each of the layer thick-(N€ interface properties and layer thicknesses may be
nesses and the interface shear strength were Vari&pntrolleq such that opt_lmal values are available, this
while the total thickness was held constant. The sim/S the desired configuration. The 428 and 85%op
ulated laminates were loaded until tensile failure andfUrves inFig. 14 also demonstrated thatwhen laminates
the results are shown in Fig. 11. This figure shows thé'® employed, the energy absorbed can actually be less
total energy absorbed by the beam for a given top layef1@n that of @ monolithic beam. Thus, great care must
thickness (total beam thickness ig21in.). Total en- be exermset_j inthe selgctlon_ ofthe interfacial properties
ergy was found by integrating the force-displacemenfnd the laminate configuration.
diagram.

The Monolithic Beam line is the energy absorbed4.2. Three-layered laminate
by a single layered beam of equivalent total thicknessAs with the two-layered laminates, the layer thicknesses
and the two-layer maximum is the maximum energywere varied from 0 to 50% of the total thickness. For
absorbed by atwo-layered laminate. The sudden drop iprogressive delamination (Fig. 12), the criteria estab-
energy absorption onthe left portion ofthe 4294 and  lished in the two-layer laminate theories were used to
85% topt curves marked the transition from monolithic determine the optimal shear strength at each stage (see
failure to complete interfacial delamination. The valueFig. 10) and the corresponding the amount of energy
for 7ot Was obtained through Equation 10. absorbed. Due to the presence of the second crack tip
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Figure 13 Optimal energy absorption for simultaneous failure in a three-layered laminate.

in Stage 3, no closed form solutions for the optimalusing finite element methods. Prompted by the results of
interfacial properties and failure loads were found forthis analysis, closed from solutions were found for the

simultaneous failure. In this case, aniterative procedureptimal shear strength and the optimal fracture tough-
employing the finite element model was used. Graphsiess for the interface of a two-layered laminate. The

of both analyses are shown in Figs 12 and 13. In eachesults were then used to develop design guidelines for
case, the two-layered data is also given for comparisorimproved energy absorption for both two- and three-

Fig. 12 was generated using the closed-form results anldyered laminates.

several finite element data points are shown as verifica- The major findings of this work are:

tion. Fig. 13 was created by repeated runs of the finite

element model since, as stated previously, no closed e The tensile stresses along the midplane during de-
form solutions exist for this case. lamination are nonlinear and attain a maximum at

In both modes it appears that the two-layer case was some crack lengthy,, ..

a maximum and that, as the top layer thickness de- e The optimal interfacial strengths (shear and frac-
creased, the three-layered results approached this max- ture toughness) for a two-layered laminate in
imum. Thus, ah; — 0, Egd:é’fbred: E;blggrebred It is be- which transverse failure is inhibited were deter-
lieved that not permitting transverse tensile failure of ~ mined and are presented in Equations 10 and 11,
the lamina is the probable cause of this result. If the  respectively.

individual layers were allowed to crack transversely as e Using failure branching criteria, the energy ab-
in[11], itis likely that the three-layered laminate would ~ sorbed by both a two- and a three-layered laminate
have been more energy absorbent. Thus, if delamina-  prior to tensile failure was found. Based upon these
tion is the only failure mechanism permitted and opti-  guidelines, the optimal energy absorption config-
mum interfacial materials are available, the two-layered ~ uration was found to be a two-layer beam with
laminate with equal thickness layers is the optimal con-  equal thickness layers as long as interface materi-
figuration. als are available such that= topt andG¢ < G,

It is important to note that this analysis is very sen-  0r G¢ = Gg,,, andzs < 7opt. These interfacial prop-
sitive to the in-plane shear stress distribution used in ~ erties were the largest values that still permitted
determining interlaminar shear failure. It appears that ~complete delamination. If the properties are not
the optimal case is one in which the interface liesalong ~ optimal, it is possible that another geometric con-
the point of maximum shear. With a parabolic shear  figuration could give maximum energy absorption,
distribution, the optimal condition will result if the in- although this energy will still be less than that
terface is along the middle of the beam (i.e., equal thick-  achieved with optimal materials. The design guide-
ness layers). When contact stresses are considered, the lines provided should assistin determining the cor-
distributionis no longer parabolic and the point of max- rect geometry.
imum shear will shift toward the point of application
of the load. Thus, itis likely that equal thickness layers
will not be optimum. Further work accounting for the References
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