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The intent of this paper is to investigate the mechanics of delamination growth in an
isotropic, ideally-brittle layered material under an impact load and to present guidelines for
the design of more energy absorbent structures. Using a finite element model, both two-
and three-layered configurations are considered. Prompted by the results from this model,
closed-form solutions for the interlaminar shear strength and the interfacial fracture
toughness corresponding to maximum energy absorption are derived for the two-layered
laminate. These solutions were used to develop guidelines for the optimal design of two-
and three-layered laminates. C© 1999 Kluwer Academic Publishers

1. Introduction
Since the beginning of the modern transportation era,
a need has existed for effective protection against im-
pact. Most of the techniques currently employed focus
on damage tolerance or the ability to maintain residual
strength after impact occurs. Because delaminations in
layered beams greatly reduce residual strength, it is usu-
ally beneficial to minimize their extent. For many ap-
plications this is appropriate, since most structures, es-
pecially those in the aerospace industry, must be able to
sustain numerous minor impacts before needing repair.

Recently, several researchers [1–4] have recognized
that the extent of delamination in layered materials can
profoundly affect the amount of energy absorbed during
impact. Based upon this concept, the focus of impact
protection may be switched from maintaining resid-
ual strength to using the formation of delaminations to
maximize energy absorption. While this concept is ap-
pealing, it does leave the structure with low residual
strength and, consequently makes it vulnerable to fu-
ture impacts. If, instead, a disposable barrier-shell de-
signed specifically for damage protection is wrapped
around the structure, the shell may be removed and
replaced after it is damaged, leaving the interior un-
damaged and intact. Such impact bumpers could also
be applied as cheap modifications to existing structures,
perhaps in a manner similar to the tiles that form the
heat shield on the space shuttle.

Many industries already employ barrier-shells for
impact energy absorption. Race car bodies are designed
to crush and peal off, each piece taking a bit of the im-
pact’s kinetic energy with it, saving the rigid driver
chassis from harm. Tanks also employ similar layer-
ing techniques to protect against missile strikes. Recent
work [1] has also hinted at using metallic layered mate-
rials for automobile bumpers and highway guard rails.

Unfortunately, design guidelines for using damage for-
mation as a mechanism for energy absorption have not
yet been established. This study was designed to ex-
plore the mechanics of delamination in layered mate-
rials in order to establish such guidelines for achieving
optimal energy absorption.

In the present study, a layered beam under a statically
applied three-point bending load was considered. Static
loading has previously been found to be a good approxi-
mation for low velocity impact when the impactor mass
is large compared to that of the beam [5].

2. Model
2.1. Structure
Since the focus of this work was on the benefits of layer-
ing, failure was assumed to occur in the interface alone.
Thus, transverse (tensile) failure of the lamina was con-
sidered catastrophic and represented final failure. In or-
der to isolate the effect of interface delamination upon
the absorbed energy, only two- and three-layer geome-
tries as shown in Fig. 1 were considered.

A finite element model with twenty-four Euler-
Bernoulli beam elements was used to represent the
brittle lamina. This number gave excellent agreement
with standard solutions (i.e., 3-point bend and end-
notched flexure). The simulation of an adhesive inter-
face was accomplished with Lagrange’s method of un-
determined multipliers. This is a simple yet powerful
means of enforcing constraints without the numerical
problems associated with stiff springs. In matrix form,
the constraints may be written as [C]{u}= {0}, where
[C] is a constraint matrix,{u} is the displacement vec-
tor, and{0} is the null vector.

Because of the offset created by not having the
beam nodes collocated along the interface, the coupling
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Figure 1 Specimen geometry.

between the rotational and translational dof. must be
accounted for. If small rotations are assumed, the ro-
tational effect on the vertical (v) displacement may be
neglected, but the horizontal (u) component constraint
becomes,

u1−
(

h1

2

)
θ1 = u2+

(
h2

2

)
θ2

whereu1, h1, andθ1 refer to the top beam node andu2,
h2, andθ2 refer to the bottom beam node.

Putting these constraints into matrix form, [C] is
found.

C =
1 0 −h1/2 −1 0 −h2/2

0 1 0 0 −1 0
0 0 1 0 0 −1


From this a rigid element stiffness matrix can be deter-
mined by the relation,

k =
[

0 CT

C 0

]

2.2. Crack propagation
Because brittle behavior is assumed in both the lam-
ina and interface materials, Griffith’s [6] strain energy
release rate criteria may be used to predict the onset
of crack propagation in lieu of the more tedious stress
field analysis. The basic equation for the strain energy
release rate,G, is given in Equation 1, below.

G = ∂U

∂A
(1)

With this method, the fracture mechanics failure cri-
terion isG≥Gc. It is important to note that there are
actually three modes of fracture—opening (I), shearing
(II), and tearing (III); however, since transverse failure
of the lamina was the final failure criteria, the crack
growth is purely Model II. For this reason,GII andGII c

(the Mode II energy release rates) will be referred to
simply asG andGc.

Two methods were used for the calculation of the
strain energy release rate: Virtual Crack Extension and
the Zero Volume Integral. The Virtual Crack Extension
method directly applies Equation 1. The Zero Volume
Integral method is based on theJ-integral concept de-
veloped by Rice [7]. Because of its numerical efficiency
and accuracy, the Zero Volume Integral method was
used in the simpler two-layer case, but for reasons to
be explained below, it could not be used for three-layer

laminates. For this configuration, the Virtual Crack Ex-
tension method had to be employed.

Virtual Crack Extension is the most basic and the
most commonly used method for the calculation ofG.
As stated above, it relies on the direct application of
Equation 1 in the numerical model. When displacement
control and the force-displacement relation are applied,
the strain energy release rate becomes,

G = 1

2
{u}T

{
∂F

∂A

}
(2)

where{u} and{F} are the displacement and load vec-
tors along the midspan. In the finite element model,
the derivative in Equation 2 can be computed numeri-
cally using forward difference. Thus, the crack is propa-
gated a small amount,1A (i.e., one element) and a load
change,1F , is found. This method proved to be very
useful with three-layered laminates where the Zero Vol-
ume Integral couldn’t be applied. Unfortunately, it was
comparatively computationally expensive and slightly
less accurate due to the numerical differentiation.

The Zero Volume Integral developed by Shankar [8]
to model delaminations in composite beams and later
[9] composite plates afforded a tremendous savings in
computational effort.

Since this method uses already calculated values (i.e.,
loads and displacements), the extra “virtual” propaga-
tion step in the Virtual Crack Extension method was
not required. As long as the beam elements around the
crack tip are chosen such that thex-directional cosines
and the top and bottom surface tractions are zero, the
J-integral, and hence, the strain energy release rate, for
a two-layered laminate, degenerates to the following,

G = 1/b
(
U (1)

L +U (4)
L −U (2)

L −U (3)
L

)
(3)

whereb is the width of the laminate and theU (i )
L ’s are

the strain energy densities (strain energy per unit length)
of the respective beam sections as shown in Fig. 2.

In a three-layer beam where both interfaces have
started to delaminate, Equation 3 may be applied to
each crack tip.

G1 = 1/b
(
U (4)

L +U (5)
L −U (3)

L −U (6)
L

)
G2 = 1/b

(
U (1)

L +U (4)
L −U (2)

L −U (3)
L

)
G1 andG2 represent for the top and bottom crack, re-
spectively. This result implies that all of the energy
in the middle layer (elements 3 and 4) contributes
equally to both cracks—an obvious violation of the
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Figure 2 Zero-volume path for calculatingJ.

Figure 3 Algorithm flow diagram.

conservation of energy principle. Certainly, some frac-
tion of U (3)

L andU (4)
L apply to each crack, but isolating

the portions is not a simple matter. Thus, for three-
layer beams only the Virtual Crack Extension method
was used.

2.3. Algorithm
A basic flow diagram for the finite element model used
is given in Fig. 3.

Since load and displacement are linearly related, it
was not necessary to solve the system at each loading
increment. Instead, a Green’s function calculation rou-
tine was used in order to save computer effort. Thus,
during the “Solve for displacements” procedure, a unit
displacement was applied and the total system response
was measured. This response was then “scaled” in the
“Scale displacements” phase to reflect the true loading
state. The displacements resulting from this stage were
used to calculate forces and stresses.

The tensile bending stresses were calculated from
the basic beam theory combined stress formula. Shear

stresses along the undelaminated interfaces were calcu-
lated assuming a parabolic variation through the thick-
ness. In three-layer laminate cases where only one
interface had failed, the delaminated interface was con-
sidered a free surface and separate shear distributions
were found for the sections above and below the delami-
nation. It was assumed that once the interface failed due
to shear, an initial crack of length (a0) formed and that
further crack propagation was governed by the strain
energy release criteria described above. The creation
of this initial crack has been previously documented
[5] and is considered a reasonable assumption.

The Green’s function technique worked as long as
no change in the stiffness matrix or load vector oc-
curred. When the interface failed or the crack propa-
gated, the global stiffness matrix and load vector were
recompiled and the system was resolved as shown in the
“Modify Global Stiffness/Load” block and return loop.
The “new” system went through the Green’s function
process again until it too failed.

3. Optimal interfacial properties
The first set of finite element tests were designed to
establish the relationship between the interfacial prop-
erties (shear strength and fracture toughness) and en-
ergy absorption. In order to isolate the effect of property
changes, a single interface system (i.e., two-layer) like
that shown in Fig. 1 was used.

3.1. Optimal interfacial shear strength
Several trials were run for various combinations of
shear strength and fracture toughness. For each layer
thickness configuration the results of these tests were
compiled into Energy vs. Shear Strength plots; how-
ever, since all of the results followed a similar trend
only the optimal case (h1= h2) is presented (Figs 4
and 6). The data was found to be discontinuous due to
a change in the final failure mechanism, and was, thus,
broken into two parts: the First Failure Region (Fig. 4)
and the Second Failure Region (Fig. 6). In each case, the
optimal shear strength corresponding to the maximum
energy absorbed (τopt) is shown.

4183



P1: FJD 5460-98 June 17, 1999 9:54

Figure 4 Energy absorbed forτf ≤ τopt(h1 = h2).

Figure 5 Load-displacement diagram for the first failure region (h1 = h2).

The First Failure Region includes all points to the
left of the discontinuity (τf ≤ τopt) in the Energy vs.
Shear Strength plot. By analyzing the data, two basic
characteristics were found:

• This region corresponded to complete, unstable de-
lamination of the interface.
• For all values of the shear strength and fracture

toughness in this region, the laminate absorbed
more energy than a monolithic beam with the same
lamina material and geometry.

As long as the shear strength was below the opti-
mal value, increasing the shear strength resulted in a
larger first failure load as shown in Fig. 5 (F ′ → Fopt).
Because more of the total energy capacity of the mono-
lithic (unfailed) beam was realized by raising the first
failure load, the total energy absorbed also increased.

Since the crack was always found to exhibit un-
stable propagation, both the shear strength and the
fracture toughness controlled not the progression but
rather the onset of crack propagation and determined
the load at which transition between the undelami-

nated single layer beam and the completely delaminated
two-layer beam occurred (see Fig. 5). Thus, they will
both be referred to as delamination or interface control
mechanisms.

The baseline plot in Fig. 4 (Gc=0.0 N/m) repre-
sents the energy absorbed if the shear strength was the
sole delamination control mechanism. When the shear
strength was held constant and the interfacial toughness
(Gc) was increased, the toughness eventually became
the dominant delamination control mechanism. At this
point, only an increase inGc, notτf , caused an increase
in absorbed energy. When the shear strength was raised
enough that it again became the delamination control,
the energy absorbed reverted to the baseline. In this
case, even though the interface had non-zero tough-
ness, the beam had accumulated so much energy prior
to interfacial failure that the fracture toughness was in-
sufficient to resist further crack growth.

The Second Failure Region included all points to the
right of the discontinuity (τf >τopt) in the Energy vs.
Shear Strength plot. Again, several characteristics were
identified:
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Figure 6 Energy absorbed forτf > τopt(h1 = h2).

Figure 7 Load-displacement diagram for the second failure region.

• This region corresponded to either incomplete
crack propagation or no crack propagation at all.
• For all values of the shear strength and fracture

toughness in this region, the laminate absorbed
no more (i.e., less than or equal to) energy than
a monolithic beam with the same layer material
and geometry. Fig. 7 below and proceeding text
explain this in more detail.

Since the interface was not allowed to completely
fail, the maximum energy possible in this region was
that of the monolithic beam. As the shear strength was
increased fromτopt, more energy was absorbed until
the shear strength at monolithic (tensile) failure,τmf,
was reached (i.e.,Fopt→ Fmf in Fig. 7). Any increase
in τf beyond this point resulted in no additional energy
absorbed. Thus, forτopt<τf <τmf, the energy absorbed
was actually less than that for the monolithic case.

Given these findings, the boundaries of the First and
Second Failure Regions may be shown by theGc vs.τf
diagram in Fig. 8.

3.2. Theoretical optimal interfacial
properties

In order to predict the optimal interfacial strength, a
detailed derivation of the laminate’s strain energy was
performed. Only the key steps are presented here, the
remainder may be found in Ref. [10].

A detail of the beam components and their associated
forces and moments is given in Fig. 9, below. Since
there is no torsion and the beam is two dimensional
(i.e., constant width), the strain energy of the structure
degenerates to the form given below.

U =
∫ 1

0

(
M2

E I
+ P2

AE

)
dx (4)

Because of the discontinuity at the crack tip, the integral
in Equation 4 must be broken into two parts (0→a
anda→1), as shown in Fig. 9. In order to simplify
the calculation, it is assumed that all three sections are
made of the same material (i.e.,E1= E2= E3= E).
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Figure 8 First and second failure regions.

Figure 9 The section loads in a cracked two-layer beam.

Because transverse cracking was not permitted, the
vertical displacement of both Sections 1 and 2 must
be equal (i.e.,δ1= δ2). Using this result and assuming
that both ligaments are considered cantilevers, a simple
relationship between the forces and moments in the two
layers is found.

F1 = η1,2F2 M1 = η1,2M2 (5)

whereη1,2= h3
1/h3

2.
Recognizing that the total force and the total moment

along the loading line must be the sum of the contri-
butions from the two layers, the final form for the total
load and moment along the loading-line is,

F = 2(1+ η1,2)F2 M = 2(1+ η1,2)M2 (6)

If the interface constraints are applied, the axial force
and the moment in the bottom layer can be found.

P =
(

3

A1,2+ 6B1,2

)
F2(2l − a)

M2 =
(

1

A1,2+ 6B1,2

)
F2l [ A1,2− (A1,2+ 3B1,2)α]

(7)

Whereα=a/ l , and A1,2 and B1,2 are both functions
of h1 andh2.

A1,2 = h2
2

h1
B1,2 = h1+ h2

2(1+ η1/2)

With Equations 5 and 7, it is possible to express all of
the forces and moments, and hence the strain energy, in
terms of the vertical load,F . Performing the integration
given in Equation 4 and applying Castigliano’s theorem
gives the final desired result for the combined stress
along the bottom layer in terms of the interfacial shear
strength.

σ2 = τf L

12h2

[
1+ η1,2

η
2/3
1,2 (1+ η1,2)+ 3η1/3

1,2

(
1+ η1/3

1,2

)]

×


2

(
1+ 1

η
1/3
1,2

)
+
[

3

(
1+ η1/3

1,2

1+ η1,2

)
− 1

]
α

η
1/3
1,2

4
(
η

1/3
1,2 + 1

)2α3+ 1+ η1,2

3
(
η

1/3
1,2 + 1

)3


(8)

Maximum stress, and hence failure, will occur in the
thickest beam, which in this case was assumed to be the
bottom layer (i.e., Layer 2). Since the effect of contact
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stresses were neglected, the stress distribution is sym-
metric and this assumption may be made without any
loss of generality.

From Equation 8 the tensile stress is found to be a
function of the crack length. Thus, the crack length cor-
responding to the maximum stress along the loading-
line during crack propagation can be found by setting
the first derivative of Equation 8 with respect to the
crack length to zero. The differentiation produces a very
complex solution forασmax. Thus, for the sake of sim-
plicity, the high accuracy curve fit below was used as
an approximation.

ασmax =
1

1.5+ 0.7618η0.3383
1,2

(9)

This is the crack length at which the maximum tensile
stress along the loading-line occurs. As an example,
if η1,2=1 (i.e.,h1= h2), ασmax is at 44.2% of the total
beam length. From finite element model data,ασmax was
found to be 44.0%.

The optimum shear strength is attained when the ten-
sile stress atασmax approaches the tensile failure point.
Thus, τopt may be found by substituting Equation 9
into 8 for α with σ2= σf . This expression is also pro-
hibitively complex, so another curve fit was applied.
For greater accuracy, it was broken into two regions
based upon the value ofη1,2.

η1,2 < 0.04

τopt =
(

0.06985η0.575629
1,2 − 1.8159· 10−5

η0.575269
1,2 + 0.17935

)

×
(
η

1/3
1,2 + 3

1+ η1/3
1,2

1+ η1,2

)
σf

h2

1

(10)
η1,2 ≥ 0.04

τopt = (0.081275)(1.3415η1,2)
(
η0.28244

1,2

)
×
(
η

1/3
1,2 + 3

1+ η1/3
1,2

1+ η1,2

)
σf

h2

1

Using Equation 1, a similar analysis was conducted
for the fracture toughness. With the strain energy in
Equation 4, this calculation was trivial and the result is
presented below.

Gcopt =
(
η

1/3
1,2 + 3

1+ η1/3
1,2

1+ η1,2

)2

×
[

(0.01184)(0.9926353)1/η1,2

η0.10509434
1,2

](
α2

0σ
2
f h2

E

)
(11)

It is important to note that this value is only significant
if the beam has already undergone shear failure and
the fracture toughness is the primary interface control
mechanism.

Additionally, because large errors in theG calcula-
tion were encountered at small crack lengths when the

Virtual Crack Extension method was used, the optimal
value predicted by Equation 11 was generally larger
than the finite element result. Since this discrepancy
was due to numerical error associated with the forward
difference in the Virtual Crack Extension method, the
value given by Equation 11 is still considered the the-
oretically correct one.

4. Design guidelines
Through finite element analysis, four failure modes
were identified for two- and three-layered laminates.

1. Monolithic: The laminate failed as a single beam
(i.e., no interfacial failure).

2. Single Delamination: Only one of the interfaces
completely failed. In the case of the two-layered lami-
nate, this is the only possible interfacial failure mode.

3. Simultaneous Delamination: Both interfaces
failed simultaneously.

4. Progressive Delamination: The interfaces failed
sequentially and independently.

The failure progression tree for both two- and three-
layered laminates is given in Fig. 10. Simultaneous
Delamination and Progressive Delamination in the
three-layered laminate are designated by dashed and
solid lines, respectively.

The stages and their associated symbols (blocks in
Fig. 10) demonstrate the crack formation and delami-
nation process. For instance, in a two-layered laminate
(Fig. 10a), Stage 1 is the uncracked laminate, Stage 2 is
the initial formation of the crack by shear failure, and
Stage 3 is the completely delaminated interface. Failure
progression from initial crack formation to complete in-
terfacial delamination is permitted because in all stages
and all configurations the crack growth occurred unsta-
bly. With only one exception (Stage 3) two crack tips
are never simultaneously present in the three-layer lam-
inate. Thus, for all other stages, the three-layer laminate
may be modeled with the two-layer results.

As long as lamina shear failure is neglected, there
are only two possible failure modes in the multi-layered
laminate: transverse (tensile) failure and interfacial fail-
ure. In order to determine how the laminate failure pro-
gresses along the flow diagram in Fig. 10, all of the
possible failure loads are calculate at each stage. De-
pending upon the configuration of the given stage, up
to three failure loads are possible: shear failure of the
interface (Equation 12), crack propagation along the in-
terface (Equation 13), and tensile failure of the lamina
(Equation 14).

Fτ =
b
[
(ha + hb)3+ h3

c

]
3hahb

τf (12)

FG =
√

8Eb2
(
h3

a + h3
b

)
(ha + hb)2

9hahba2β2
Gc (13)

Fσ =
2b
(
h3

a + h3
b + h3

c

)
3Lhd

σf (14)

The individual loads are calculated using the three for-
mulas given in these equations and the layer thickness
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TABLE I Layer thicknesses for the failure stages

Stage Failure mechanism Equation ha hb hc hd β

1 Interface 1 12 h1 h2 + h3 0
Interface 2 12 h3 h1 + h2 0
Lamina 14 h1 + h2 + h3 0 0 h1 + h2 + h3

2 Interface 1 13 h1 h2 + h3 1
Interface 2 12 h2 h3 h1

Lamina 14 max(h1, h2 + h3) min(h1, h2 + h3) 0 max(h1, h2 + h3)

4 Interface 2 12 h2 h3 h1

Lamina 14 max(h1, h2 + h3) min(h1, h2 + h3) 0 max(h1, h2 + h3)

5 Interface 2 13 max(h2, h3) min(h2, h3) 1+ h3
1

h3
2

+ h3
1

h3
3

Lamina 14 h1 h2 h3 max(h1, h2, h3)

6 Lamina 14 h1 h2 h3 max(h1, h2, h3)

Figure 10 Failure progression in two- and three-layered laminates.

data (Table I) given below. Since no closed-form solu-
tions exist for simultaneous failure (Stage 3), no data is
presented for this configuration. Numerical results were
found using the finite element model and are presented
in Fig. 13. These were used to establish the guidelines
in lieu of the closed-form solution.

At every stage, each of these loads are compared. The
smallest of which represents the first, and consequently
only, failure load for that stage and determines the next
stage in the failure progression. There are, however,
several special cases.

1. If an interfacial failure is determined to occur, it
must be checked against the optimal value for the given
stage (Equation 10 for shear failure and Equation 11
for crack propagation). If the failure load exceeds the
optimal load then final failure has occurred; otherwise,
failure proceeds to the next stage.

2. If the fracture toughness from either Stage 2 or
5 is low compared to the shear strength of the previ-
ous stage, it is possible that the load required to con-
tinue crack propagation will be lower than the one that

initiated shear failure. In this case the interface will fail
completely at the shear failure load (i.e., Stage 1 or 4,
respectively) and that will be the final load for this stage
as well.

3. If any of the interface failure loads for a given
stage are equal, then failure occurs simultaneously.

4. For this analysis transverse failure of the lamina
was considered catastrophic and, thus, represents a fi-
nal failure. Transverse failure includes both failure by
Equation 14 and violation of the optimal shear strength
and interfacial toughness values as described in case 1
above.

This analysis was performed for the entire range of
interfacial properties and layer thicknesses. The re-
sults from this work were used to determine optimal
properties and geometry for both the two- and three-
layered laminates. For both configurations, only the
shear strength was used as the interface failure con-
trol mechanism. Similar numerical tests were run us-
ing the fracture toughness as the interfacial failure con-
trol mechanism, but the results are not presented here
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Figure 11 Optimal energy absorption for a two-layered beam with shear strength.

Figure 12 Optimal energy absorption for progressive failure in a three-layered laminate.

because they exhibited the same trend and provided
no additional information. Finite element results were
used to verify the data at discrete points in Figs 11 and
12 (denoted by the data symbols).

4.1. Two-layered laminate
For the two-layered laminate, each of the layer thick-
nesses and the interface shear strength were varied
while the total thickness was held constant. The sim-
ulated laminates were loaded until tensile failure and
the results are shown in Fig. 11. This figure shows the
total energy absorbed by the beam for a given top layer
thickness (total beam thickness is 1/2 in.). Total en-
ergy was found by integrating the force-displacement
diagram.

The Monolithic Beam line is the energy absorbed
by a single layered beam of equivalent total thickness,
and the two-layer maximum is the maximum energy
absorbed by a two-layered laminate. The sudden drop in
energy absorption on the left portion of the 42%τopt and
85%τopt curves marked the transition from monolithic
failure to complete interfacial delamination. The value
for τopt was obtained through Equation 10.

It was immediately apparent from Fig. 11 that equal
thickness layers produced the best energy absorption
in two-layered beams. As the optimal shear strength
was approached the energy curve shifted vertically and
the failure mode transition point shifted to the right
until the two-layer maximum was reached. As long as
the interface properties and layer thicknesses may be
controlled such that optimal values are available, this
is the desired configuration. The 42%τopt and 85%τopt
curves in Fig. 14 also demonstrated that when laminates
are employed, the energy absorbed can actually be less
than that of a monolithic beam. Thus, great care must
be exercised in the selection of the interfacial properties
and the laminate configuration.

4.2. Three-layered laminate
As with the two-layered laminates, the layer thicknesses
were varied from 0 to 50% of the total thickness. For
progressive delamination (Fig. 12), the criteria estab-
lished in the two-layer laminate theories were used to
determine the optimal shear strength at each stage (see
Fig. 10) and the corresponding the amount of energy
absorbed. Due to the presence of the second crack tip
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Figure 13 Optimal energy absorption for simultaneous failure in a three-layered laminate.

in Stage 3, no closed form solutions for the optimal
interfacial properties and failure loads were found for
simultaneous failure. In this case, an iterative procedure
employing the finite element model was used. Graphs
of both analyses are shown in Figs 12 and 13. In each
case, the two-layered data is also given for comparison.
Fig. 12 was generated using the closed-form results and
several finite element data points are shown as verifica-
tion. Fig. 13 was created by repeated runs of the finite
element model since, as stated previously, no closed
form solutions exist for this case.

In both modes it appears that the two-layer case was
a maximum and that, as the top layer thickness de-
creased, the three-layered results approached this max-
imum. Thus, ash1→0, E3 layer

absorbed= E2 layer
absorbed. It is be-

lieved that not permitting transverse tensile failure of
the lamina is the probable cause of this result. If the
individual layers were allowed to crack transversely as
in [11], it is likely that the three-layered laminate would
have been more energy absorbent. Thus, if delamina-
tion is the only failure mechanism permitted and opti-
mum interfacial materials are available, the two-layered
laminate with equal thickness layers is the optimal con-
figuration.

It is important to note that this analysis is very sen-
sitive to the in-plane shear stress distribution used in
determining interlaminar shear failure. It appears that
the optimal case is one in which the interface lies along
the point of maximum shear. With a parabolic shear
distribution, the optimal condition will result if the in-
terface is along the middle of the beam (i.e., equal thick-
ness layers). When contact stresses are considered, the
distribution is no longer parabolic and the point of max-
imum shear will shift toward the point of application
of the load. Thus, it is likely that equal thickness layers
will not be optimum. Further work accounting for the
contact stress distributions needs to be done to verify
this result.

5. Conclusions
A detailed study of the mechanics of energy absorption
by delamination in layered materials was performed

using finite element methods. Prompted by the results of
this analysis, closed from solutions were found for the
optimal shear strength and the optimal fracture tough-
ness for the interface of a two-layered laminate. The
results were then used to develop design guidelines for
improved energy absorption for both two- and three-
layered laminates.

The major findings of this work are:

• The tensile stresses along the midplane during de-
lamination are nonlinear and attain a maximum at
some crack length,ασmax.
• The optimal interfacial strengths (shear and frac-

ture toughness) for a two-layered laminate in
which transverse failure is inhibited were deter-
mined and are presented in Equations 10 and 11,
respectively.
• Using failure branching criteria, the energy ab-

sorbed by both a two- and a three-layered laminate
prior to tensile failure was found. Based upon these
guidelines, the optimal energy absorption config-
uration was found to be a two-layer beam with
equal thickness layers as long as interface materi-
als are available such thatτf = τopt andGc≤Gcopt

or Gc=Gcopt andτf ≤ τopt. These interfacial prop-
erties were the largest values that still permitted
complete delamination. If the properties are not
optimal, it is possible that another geometric con-
figuration could give maximum energy absorption,
although this energy will still be less than that
achieved with optimal materials. The design guide-
lines provided should assist in determining the cor-
rect geometry.
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